Exercise 103

(a) Find the linearization of $f(x)=\sqrt[3]{1+3 x}$ at $a=0$. State the corresponding linear approximation and use it to give an approximate value for $\sqrt[3]{1.03}$.
(b) Determine the values of x for which the linear approximation given in part (a) is accurate to within 0.1.

Solution

Part (a)
Plug in 0 to the function to determine the corresponding y-coordinate.

$$
f(0)=\sqrt[3]{1+3(0)}=1
$$

This means the linear approximation touches $f(x)$ at the point $(0,1)$. Now find the slope here by taking the derivative of $f(x)$,

$$
\begin{align*}
f^{\prime}(x) & =\frac{d}{d x} \sqrt[3]{1+3 x} \\
& =\frac{1}{3}(1+3 x)^{-2 / 3} \cdot \frac{d}{d x}(1+3 x) \\
& =\frac{1}{3}(1+3 x)^{-2 / 3} \cdot(3) \tag{3}\\
& =\frac{1}{(1+3 x)^{2 / 3}}
\end{align*}
$$

and setting $x=0$.

$$
f^{\prime}(0)=\frac{1}{[1+3(0)]^{2 / 3}}=1
$$

Use the point-slope formula to obtain the equation of the line with this slope that goes through $(0,1)$.

$$
\begin{gathered}
y-f(0)=f^{\prime}(0)(x-0) \\
y-1=(1) x \\
y=x+1
\end{gathered}
$$

Therefore, the linear approximation to $f(x)$ at 0 is

$$
L(x)=x+1,
$$

and

$$
\sqrt[3]{1.03}=\sqrt[3]{1+3(0.01)} \approx(0.01)+1=1.01
$$

Below is a graph of the function and its linear approximation at 0 .

Part (b)

In order for the linear approximation to be accurate to within 0.1 , the following inequality needs to be solved for x.

$$
\begin{gathered}
|f(x)-L(x)|<0.1 \\
-0.1<f(x)-L(x)<0.1 \\
-0.1+L(x)<f(x)<0.1+L(x)
\end{gathered}
$$

As long as the curve stays between the lines defined by $y=-0.1+L(x)$ and $y=0.1+L(x)$, the linear approximation will be accurate to within 0.1.

This occurs for

$$
-0.23555<x<0.401445
$$

